Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization.
نویسندگان
چکیده
The complex pathogenesis of mineralization defects seen in inherited and/or acquired hypophosphatemic disorders suggests that local inorganic phosphate (P(i)) regulation by osteoblasts may be a rate-limiting step in physiological bone mineralization. To test whether an osteoblast autonomous phosphate regulatory system regulates mineralization, we manipulated well-established in vivo and in vitro models to study mineralization stages separately from cellular proliferation/differentiation stages of osteogenesis. Foscarnet, an inhibitor of NaP(i) transport, blocked mineralization of osteoid formation in osteoblast cultures and local mineralization after injection over the calvariae of newborn rats. Mineralization was also down- and upregulated, respectively, with under- and overexpression of the type III NaP(i) transporter Pit1 in osteoblast cultures. Among molecules expressed in osteoblasts and known to be related to P(i) handling, stanniocalcin 1 was identified as an early response gene after foscarnet treatment; it was also regulated by extracellular P(i), and itself increased Pit1 accumulation in both osteoblast cultures and in vivo. These results provide new insights into the functional role of osteoblast autonomous P(i) handling in normal bone mineralization and the abnormalities seen in skeletal tissue in hypophosphatemic disorders.
منابع مشابه
Tenascin C affects mineralization of SaOS2 osteoblast-like cells through matrix vesicles.
Tenascin C (TNC) is an extracellular matrix glycoprotein involved in osteogenesis and bone mineralization. In a previous study, we identified TNC protein located in the matrix vesicles (MVs) of osteoblasts. MVs are determinant in the mineralization formation. Therefore, we hypothesize whether TNC can modulate osteoblast mineralization via MVs. In this study, we demonstrated that the expression ...
متن کاملMice with Hypomorphic Expression of the Sodium-Phosphate Cotransporter PiT1/Slc20a1 Have an Unexpected Normal Bone Mineralization
The formation of hydroxyapatite crystals and their insertion into collagen fibrils of the matrix are essential steps for bone mineralization. As phosphate is a main structural component of apatite crystals, its uptake by skeletal cells is critical and must be controlled by specialized membrane proteins. In mammals, in vitro studies have suggested that the high-affinity sodium-phosphate cotransp...
متن کاملA cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization
A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrop...
متن کاملTranscriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1
The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD) receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteobla...
متن کاملThe activin A-follistatin system: potent regulator of human extracellular matrix mineralization.
Bone quality is an important determinant of osteoporosis, and proper osteoblast differentiation plays an important role in the control and maintenance of bone quality. We investigated the impact of activin signaling on human osteoblast differentiation, extracellular matrix formation, and mineralization. Activins belong to the transforming growth factor-beta superfamily and activin A treatment s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2007